
STATUS QUO

• Data practitioners split into producers and consumers 

• Small group of producers 

• Consumers unable to contribute, beholden to producers 

• Data thrown over the wall, black box





25k+ stars. 1.4k open issues. One committer

“Consumers beholden to producers”: JHU gets separate data updates from Taiwan and mainland China. A few months into the pandemic they started aggregating into a 
single value. Lots of upset comments.



DATA ARCHITECTURES

Despite being on GitHub, JHU Covid is example of centralized data architecture. Data warehouse is a common centralized architecture. Risk averse. Hard to coordinate 
changes. Ask for permission bureaucracy. Waterfall development.

Shared nothing: each practitioner has their own environment, no sharing with other users. Workable in some professional service-type organizations. Autonomy to make 
changes anywhere. Can’t break other users (or be broken). Collaboration is expensive.



DISTRIBUTED

Best of both worlds? Each practitioner gets their own workspace, but can publish and share with others.



GIT

Exactly the model of Git!



Enough architecture hand waving, what could this look like?

Not my product. Mock made by mashing up two products: a non-collaborative data pipeline tool, and a collaborative video editing tool. What if stakeholder interactions 
were front-and-center while working on our data pipelines.



Same slide, sketched



Ask for others to look at your changes. Like GitHub pull request. Surface automated test results, anomaly detection, trends, discussion



Discussion -> suggestions. Data needs to be explored. What if reviewers could try their own ideas out?



Integrate changes AFTER everyone has reviewed and seen the results



FORK THE DATA WAREHOUSE

Conceptually like having unlimited copies of the data warehouse



DATA VS METADATA

• Metadata is data about data: where, who, when, from what, etc 

• Metadata is fully managed and immutable 

• Data can be mutable 

• Data is external 



ONION LAYERS

Knit’s functionality built up in layers.

Very compact domain-agnostic core on inside. Domain specialists (data analysts) on outside. Middle layer of “modules” that bridge between them



PROVIDE EXTENSIBILITY
MODULES

• Backing stores: S3, Snowflake, Postgres 

• Data transformations: SQL, pandas, scikit-learn 

• Frontends: pipeline code, GUI, notebook 

• Runtime dependencies: virtualenv, Docker

Kind of like PyPI or NPM


